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SUMMARY 

The mixed form of the areal groundwater flow equations is solved with a least-squares finite element 
procedure (LESFEM). Hydraulic head and x- and y-directed fluxes are state variables. Physical parameters 
and state variables are approximated using a bilinear basis. Grid refinements and irregular domain 
boundaries are implemented on rectangular meshes. 

Residuals are constructed at collocation points for conservation of mass and Darcy's law. Boundary 
condition residuals are constructed at discrete points along the boundary. The residuals are weighted, 
squared and summed. A set of algebraic equations is formed by taking the derivatives of the weighted sum of 
the squares of the residuals with respect to each unknown parameter in the approximation for the state 
variable and setting them to zero. 

Proper choice of a potential scaling parameter and residual weights is essential for the effective application 
of the algorithm. Test problem results demonstrate that the method is effective for both transient and steady 
state cases. 

The LESFEM algorithm generates a Co-continuous velocity field. The continuous velocity field and the 
rectangular mesh simplify the implementation of algorithms that require tracking. In addition, rectangular 
meshes simplify mesh and boundary generation. 
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INTRODUCTION 

Eulerian-Lagrangian procedures for solving the transport equation require an accurate velocity 
field to accommodate the tracking step. In general, the velocity field must be generated by 
numerically solving the partial differential equations that govern flow. This paper introduces 
a numerical procedure for solving the mixed form of the vertically averaged groundwater flow 
equations. The algorithm (LESFEM) is based on a least-squares finite element procedure. 

Perhaps the most popular method used to solve groundwater flow problems is the Galerkin 
finite element method. The method is popular because irregular domain boundaries can be 
represented and boundary conditions are easily incorporated into the governing equation. The 
method, as normally applied, employs non-rectangular elements. Such elements complicate 
tracking procedures. In addition, typical Galerkin-based algorithms produce velocity fields that 
are piecewise-constant or C - '-continuous. Also, mesh generation is often labour-intensive and 
cumbersome. 

Least-squares procedures have been applied to parabolic partial differential equations,'-' but 
few researchers have applied them directly to groundwater flow  problem^.^ Using least squares, 
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irregular domains can be defined on rectangular meshes4, ’ and a grid refinement strategy can be 
developed that uses rectangular elements. Consequently, the generation of element connectivities 
and nodal locations is easily automated. Similarly, the boundary geometry can be easily 
generated from a set of co-ordinates which define straight line segments that approximate the 
boundary. Any type of boundary condition can be accommodated using a penalty method. 
Finally, use of an orthogonal mesh simplifies tracking. 

Groundwater flow is commonly simulated by using hydraulic head as the state variable and 
solving a partial differential equation of second order in space. The resulting head distribution is 
subsequently differentiated and substituted into Darcy’s law to generate flux values. The solution 
of this form of the equation with a least-squares method requires a C’-continuous basis, leading 
to serious difficulties. However, a lower-order continuity basis can be used by solving an 
equivalent system of coupled first-order partial differential equations.1*6-8 In addition, patho- 
logic behaviour in the head field tends to be amplified when the fluxes are computed, because the 
heads are differentiated during the application of Darcy’s law. The differentiation of heads to 
generate fluxes also lowers the order of the spatial approximation of the fluxes relative to that of 
the heads. Researchers have reduced the pathologies in the fluxes and raised the relative order of 
approximation of the fluxes by using the mixed form of the flow The mixed form of 
the flow equations is a coupled set of first-order partial differential equations wherein the two 
directions of flux, as well as the hydraulic head, are considered as state variables. 

In order to improve the relative accuracy of the velocity field and to reduce the basis continuity 
requirements, the mixed form of the groundwater flow equations is used in the following 
development. Use of the mixed formulation leads to Co-continuous fluxes. Combining the fluxes 
with a Co-continuous parameter field yields a Co-continuous velocity field. As mentioned earlier, 
continuous velocities are desirable for tracking in the application of Eulerian-Lagrangian 
methods. 

VERTICALLY AVERAGED FLOW EQUATIONS 

For the reasons outlined in the Introduction, areal ground water flow will be described by the 
following system of three coupled equations: the vertically averaged conservation of mass, the 
vertically averaged Darcy’s law in the x-direction and the vertically averaged Darcy’s law in the 
y-direction. Three variables will be used to describe the state of the system: the vertically averaged 
hydraulic head h, the vertically averaged flux in the x-direction, q x ,  and the vertically averaged 
flux in the y-direction, q y .  

The vertically averaged forms of the conservation-of-mass equation and Darcy’s law can be 
found, for example, in Reference 11. The conservation-of-mass equation is 

ah a4x a4 
at ax ay S -+-+>+ B(h - h , )  - I - QP6(x - x,,) = 0, x E Q, 

where S is the storage coefficient, x and y are spatial co-ordinates, x is a spatial co-ordinate vector, 
t is time, B is leakance, h, is a leakage reference head, I is infiltration and R is the domain of the 
aquifer which is bounded by 6R. The source term Q, represents point sinks and sources such as 
pumping or injection wells, while 6(x - x p )  is the Dirac delta function. All fluxes are positive into 
the domain a. Darcy’s law in the x-direction is 

ah dh 
4 x +  Txx-+ Txy -=o, XER, ax ay  
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and Darcy’s law in the y-direction is 

ah  ah 
qy+Tyx-+Tyy-=O, X € R ,  ax ay (3) 

where Tij are elements of the transmissivity tensor. Transmissivity tensor elements are equal to 
the hydraulic conductivity tensor elements K i j  times the layer thickness 1. 

When the aquifer is confined, the equations are linear. When the aquifer is unconfined, the 
saturated layer thickness 1-h-b  is a function of the head and the aquifer bottom elevation b. 
Since the transmissivity Ti j=lKi j  is dependent on the hydraulic head, equations (2) and (3) 
become non-linear. The specific yield S, and the specific storage S ,  are related to the storage 
coefficient by S = S ,  + lS , .  Because the storage coefficient is dependent on h, equation (1) is also 
non-linear for an unconfined aquifer. However, this equation is only weakly non-linear, because 
the specific yield tends to be much larger than the specific storage. 

The initial state of h, qx and qy must be specified and their values are denoted as h,, &.. and ijyo 
respectively. Boundary conditions may be of three types: specified head, 

specified flux, 
- - 

q .n-bz  =(qxcos v +q,sin v)- bZ =0, x E SR2, (4b) 
and mixed conditions, 

-Bb(h - hbr) + q . n = -Bb(h-  hbr) + ( qx cos v + qy sin v)=O, x E bR3, (44 
where 6Ri is the segment of boundary associated with the ith-type boundary condition, 6 are the 
specified boundary values, q is the flux vector, n is the outward-directed normal vector, v is the 
angle of the outward-directed normal measured counterclockwise from the positive x-direction 
and Bb and hbr are boundary leakage parameters. 

SPATIAL DISCRETIZATION 

Grid definition follows the general approach of Laible and Pinder.5 In this approach, grid 
refinements and irregular domain boundaries are superimposed on orthogonal meshes. Grid 
definition begins with a rectangular mesh oriented along the x- and y-axes as illustrated in 
Figure 1. The elements in this coarse mesh are called grid blocks. The size of the grid blocks 
should be the dimension of the largest element in any row or column of the final grid. The 
example in Figure 1 has a pattern of 10 grid blocks by 10 grid blocks. 

Grid blocks can be refined by divisions of integral powers of two. For example, a grid 
refinement of two means that each side of the grid block is split in the centre and four elements are 
created. The example in Figure 1 has 12 grid blocks refined by two and four grid blocks refined 
by four. When two grid blocks of different refinement share a side, ‘hanging nodes’ are created. 
Node 2 in Figure 1 is an example of a hanging node. The hanging nodes have associated trial 
functions which are active on only one side of the element boundary and, as will be detailed later, 
they will require special treatment. Grid blocks which share a common side are allowed to vary 
by a maximum of one refinement level. This requirement assures that aberrations due to vastly 
different adjacent refinements do not arise. 

The domain boundary is projected onto the final mesh by specifying the co-ordinates of the 
intersections of the element boundaries with the domain boundary (see Figure 2). The domain 
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DOMAIN BOUNDARY 

Figure 1. Pumping well in a circular aquifer. A circular aquifer of radius 1000 m is discretized with an orthogonal mesh. 
The co-ordinate origin is located at the centre of the aquifer (node A). The largest elements are 200 m x 200 m and the 
most refined elements are 50 m x 50 m. The star indicates a pumping well located at (25 m, 25 m). Steady state hydraulic 
heads are contoured at the interval of 0.05 m, with the zero contour falling on the circular domain boundary. Nodes 

labelled N and elements labelled E are inactive 

Figure 2. Irregular domain boundary. The rectangular mesh (solid lines) is cut by an irregular domain boundary (broken 
line) which is enforced with penalty points (triangles). Inactive elements are cross-hatched and inactive nodes are 
represented by solid squares. Only collocation points which fall within the domain (pluses) are used in the sum of the 

squared residuals. Speckled squares are active nodes located outside the boundary 
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boundary is assumed to lie along straight lines connecting the intersections. Figure 1 demon- 
strates a circular boundary that has been approximated by a series of straight line segments. 

After the boundary has been projected onto the mesh, some elements may lie completely 
outside the domain and they are eliminated from the problem (see Figure 2). Nodes which are 
connected only to inactive elements are also eliminated. The example presented in Figure 1 
contains 12 inactive nodes labelled N and 12 inactive elements labelled E. 

Each of the three state variables is approximated with bilinear trial functions on the previously 
described rectangular grid. Following standard finite element protocol, a local co-ordinate system 
is defined, 

2 ( x  - x') c= Axe - 1, 

where xe and y e  are the co-ordinates of the lower left corner of the eth element and Ax' and by' 
are the element side dimensions. 

In the local co-ordinate system the four basis functions within an element can be written 

$i(t, ~)=i(l +tti)(l + ? ~ i ) ,  i = l ,  . . . 9 4 9  (6) 
where ti and q i  are the local co-ordinates of the ith node and take on values of positive and 
negative unity. A cardinal basis function Y J ( x , y )  can be constructed for the J th  node by 
combining the appropriate bilinear basis functions from elements that are connected to the node. 
Although the cardinal basis functions are never constructed, they are used to define the trial 
functions 

M 

h^= C H J ( t ) Y J ( X , Y ) ,  (74  

8x=  C Q X J ( ~ ) Y J ( ~ ,  Y ) ,  (7b) 

i Y =  C Q Y J ( ~ ) ~ J ( ~ ,  Y ) ,  (74 

J = 1  

M 

J =  1 

M 

J = 1  

where M equals the number of active nodes and H J ( t ) ,  Q X J ( t )  and Q Y J ( t )  are the time-varying 
values of the state variables at the J th  node. 

Anticipating the form of the least-squares equations, h^must be at least CO-continuous, ix must 
be at least Co-continuous in x and piecewise-continuous in y and iY must be at least Co- 
continuous in y and piecewise-continuous in x .  The continuity of the trial spaces is maintained by 
setting the values of the state variables at the hanging nodes to the average values of the state 
variables at the two adjacent nodes along the element boundary line containing the hanging node. 
For example, 

Although only one of the fluxes must be continuous at a hanging node, both fluxes are slaved at 
hanging nodes in order to maintain a fully continuous flux field. 

Good results have been obtained by defining parameters constant over elements, but the 
velocity fields that are generated are not necessarily continuous. Consequently, parameters are 
specified at all nodes except hanging nodes. The values at hanging nodes are set to the average of 
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the values of the two nodes bracketing the hanging node, in the same manner as demonstrated in 
equation (8) for head. Interior to elements, the parameter values are interpolated using the 
bilinear basis of equation (6). Thus all parameters are Co-continuous. Since fluxes are Co- 
continuous, the resulting velocity field will also be CO-continuous. The parameters that must be 
assigned to each node are horizontal hydraulic conductivity K,,, K,, and K x y = K y x ,  specific 
storage S,,  leakance B, leakage reference head h, and infiltration rate I .  Further, if the aquifer is 
confined, the layer thickness 1 must be specified. If the aquifer is unconfined, the specific yield S,  
and the elemental bottom elevation b are specified. 

LEAST SQUARES EQUATIONS 

Errors or residuals arise whenever the trial functions do not exactly meet conditions which arise 
from the mathematical description of the physical system. In the LESFEM method, individual 
collocation point errors are squared, multiplied by a weight and then summed to form the 
weighted sum of the squares of the errors, which herein is denoted E.  The sum of the squares of the 
errors is minimized by taking the derivatives of the sum of squares with respect to each of the 
unknown degrees of freedom appearing in the approximations of the state variables, equations 
(7), and setting the results to zero. 

At this point it is convenient to introduce a potential scaling parameter P such that scaled head 
Hi= Hj/P. The parameter P is used to adjust the magnitudes of the state variables so that fluxes 
and heads are roughly equivalent. The choice of the value of P is discussed later. 

A conservation-of-mass residual is formed by substituting the trial functions, equations (7), into 
the conservation-of-mass equation (1) and evaluating the result at a point xk: 

where superscript k indicates evaluation at  the point x k .  The time derivative in equation (9) is 
approximated by an implicit finite difference and the equation is transformed to the local 
co-ordinate system. After some rearranging, a conservation-of-mass residual becomes 

- ( P S * I ; ; - ‘ + B k h ~ + I k + Q p 8 ( x k - x p )  At 

where the coefficients Hj., Q X j e  and QYje  are the nodal values of the trial functions of the scaled 
head and the fluxes at  the solution time level n respectively, &’ is the value of the trial function 
at location xk and the previous time level n -  1 and j e  are the node indices of the four nodes 
attached to element e. Whenever j‘ is a hanging node, the average of the two adjacent nodes is 
used as indicated in equation (8). 

The Darcy’s law residuals are formed by substituting the trial functions, equations (7), into the 
Darcy’s law equations (2) and (3) and evaluating the resulting expression at the collocation point 
locations x k :  
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Residuals for the first-, second- and third-type boundary conditions are formed by substituting 
the trial functions, equations (7), into the boundary condition equations (4) and evaluating the 
results at  the collocation points 11, 1, and l3 respectively: 

1 s = 1  

where the Ws are weights associated with a residual type and collocation point location and N K ,  
NB1, N B ,  and NB3 are the total numbers of the various types of collocation points. Collocation 
point weight selection is discussed later. 

If there are M active nodes in the mesh, equation (14) contains 3M unknowns. A system of 3M 
equations is generated by taking the derivative of equation (14) with respect to each of the 
unknowns and setting it to zero. Examination of equations (10)-(13) reveals that some residuals 
do not contain all of the state variable types and some of the residual derivatives will be 
identically equal to zero. After eliminating the zero terms, the least-squares system of equations 
becomes: 

-0, Z = l , .  . . , M ,  (I5a) aRb3,13 
rn:,1sRb3,1s aH;- 

-0, I = 1 , .  . . , M, (15b) aRb3.1s 
Wb:,1,Rb3.1s --- 

~ Q X I  

Equation (15) represent the set of discrete equations that must be solved in the least-squares 
groundwater flow problem. The equations form symmetric, positive definite system matrices. The 
element entries for the system matrix and right-hand-side vectors are detailed in the Appendix. 
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When the aquifer is unconfined, the flow equations are non-linear and are solved by Jacobi 
iteration. 

COLLOCATION POINT LOCATIONS 

In most numerical methods, locating collocation or integration points at the Gauss points will 
yield the most accurate solutions, and convergence studies show that LESFEM is not an 
exception. The use of more than four collocation points per element may in some cases marginally 
improve the solution, but the improvements are generally not worth the increased computational 
effort. Consequently, as shown in Figure 2, four interior collocation points are located at the 
Gauss points of each element. If the element is a boundary element and the Gauss point is outside 
the domain boundary, the point is not used. Three boundary collocation points per boundary 
element are equally spaced along the straight line segment that passes through the boundary 
element. 

POINT SOURCES 

Equation (10) is singular at locations xp due to the point sources. In order to avoid the difficulties 
surrounding the evaluation of residuals at singular points, point sources are approximated by 
source elements. Within source elements, Q P d ( x k - x p )  is replaced by an areal source term of 
strength QP/AxeAye.  

The flux trial functions are not capable of matching the solution in the immediate vicinity ofthe 
source. Whether the source is located at a node or within an element, the bilinear trial functions 
associated with the fluxes must pass through zero as they go from positive to negative through the 
source location. In reality, the flux goes to large-magnitude positive and negative values depend- 
ing on the direction from which the source is approached. Consequently, the magnitude of the 
flux is severely underpredicted by the trial function near the source. The Darcy's law residuals 
relate the magnitude of the fluxes to the magnitude of the gradient of the heads, and the large flux 
errors cause the gradient of the head to be underpredicted. Although the flux may be well 
represented at the nodes surrounding the source, the heads are contaminated by the large local 
flux errors, causing errors to propagate into the rest of the domain. 

A special procedure is required in order to avoid the problems just described. Point sources are 
located within elements. Realizng that Darcy's law will cause the heads to be contaminated by the 
large local flux errors associated with source elements, the Darcy's law equations are 'turned off' 
inside source elements. When a source element is identified, all the contributions associated with 
Darcy's law are eliminated by setting the Wqx,k and Wqy,k to zero in the source elements. 

As the examples will demonstrate, the above-described procedure performs well. However, the 
purpose of the flow code is to generate tracking velocities, and the flux within the source element 
is poorly predicted. In order to avoid tracking difficulties near point sources, a local interpolating 
function is added to the trial function after the solution has been computed. The form of the 
additional term is derived from the steady state Thieml2 solution of a well in an infinite aquifer: 

q x S , P = G  " r p  (1 -$) , r,< R,, 
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where r,, is the distance to the pth well and R, is set to assure that the influence of the interpolating 
functions is restricted to the source element. The source functions are simply added to the 
appropriate trial functions during the tracking step or when computing dispersion tensor values 
from dispersivities and velocity. Since the expressions are derived from a steady state solution, 
they will tend to overpredict fluxes in the source element during the earliest stages of transient 
solutions. It is emphasized that these expressions have no influence on the flow calculation. An 
example calculation with a pumping well is reported in a later section and the results will 
illustrate the relation between the singular flux function, the linear trial space and the analytical 
solution (see Figure 6). 

WEIGHTS AND SCALING 

The potential scaling parameter P is chosen so that the fluxes and the scaled heads are of 
equivalent magnitudes. If we define the parameters ( T x x )  and (T,,, ,) as the representative values 
of the transmissivity tensor and (Ax) and (Ay) as the representative values of the grid elements, 
then 

will balance the terms in equations (11) and (12). When the spatial discretization and the 
transmissivity values vary widely and create a large range of appropriate values of parameter P, it 
is best to choose one from the high side of the range. Note that this equation indicates that in 
selecting the aspect ratio of the grid one should take into account the anisotropy of the 
transmissivity tensor. However, anisotropy is typically not large for horizontal flow problems. 

The interior weights are chosen to make the conservation-of-mass residuals, equation (lo), and 
the two Darcy’s law residuals, equations (1 1) and (12), of the order of unity in the terms involving 
the state variables: 

Practical experience has shown that although these weights are often sufficient, global mass errors 
of the order of 5% can develop. In such cases the conservation-of-mass weights should be 
increased by a factor of two to three to improve the results. 

When flow is steady, the flow equations become an elliptic system. If, in addition, the 
discretization interval is constant and the transmissivities are isotropic and homogeneous, then 
the weighting of equation (18) is consistent with the governing equation weights derived by Aziz 
et a1.* for the least-squares solution of elliptic systems. In this case the weighting scheme causes 
the conservation-of-mass residual to be multiplied by the discretization interval, compensating 
for the difference in units between the conservation-of-mass equation and the Darcy’s law 
equation. 

Boundary weights should be chosen so that they are large enough to enforce the boundary 
conditions but not of unlimited magnitude. If the boundary weights are too large, then the 
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conservation-of-mass and Darcy's law residuals become relatively small and will no longer 
sufficiently influence the solution. This can result in erratic behaviour of the flux and head values 
near the boundaries. If the boundary weights are too small, the boundary conditions will not be 
enforced, resulting in oscillatory or unstable solutions. Experience to date has been that solutions 
are relatively insensitive to boundary weights over several orders of magnitude. Only small 
variations between solutions have been observed while using weights of the order of 10-105, but 
use of the smaller values improves the conditioning of the system matrix. 

The degrees of freedom associated with nodes outside the domain boundary but still connected 
to active elements may require special consideration. This is especially true when only a small 
part of the active element is within the domain boundary. To accommodate this situation, a very 
small value is added to the diagonal element of the system matrix of the equations associated with 
degrees of freedom located outside the domain. These weights, typically of the order of 
provide a slight bias to zero and control unwanted oscillations. 

Generally, the more suitable the trial space is for representing the actual solution to the discrete 
equations, the less sensitive the computed solution is to the weighting. As a grid is refined, the 
sensitivity of the solution to the weights decreases. If solutions are very sensitive to weighting, it 
may indicate that the grid is insufficiently refined. 

CONVERGENCE 

The spatial convergence of the method was studied heuristically. A domain of length 10oO and 
one element width was divided into two, five, 10, 20 and 40 elements. Boundary conditions are 
ĥ (x = 0) = 0, h(x  = 10oO) = 10 and &,( y = 0) = (f,( y = A Y) =O. The simulated aquifer was confined 
and of unit thickness, with hydraulic conductivity K,, = K,, = 1 + 9x/1000 and K,, = 0. Weighting 
and scaling were as follows: potential parameter P = Ax, boundary weights Wb = lo3 and mass 
conservation weights, equation (18a), were increased by a factor of two. 

Using the analytical solution, the error in the LESFEM-computed heads and x-directed flux 
was computed at each of the nodes and each of the Gauss points. A plot of the logarithm of the 
maximum error in the heads versus the logarithm of the element length for the Gauss points 
and for the nodes is presented in Figure 3A. A similar plot for the x-directed flux is presented in 
Figure 3B. The results are consistent with first-order spatial convergence of both flux and head in 
the I,,-norm. 

A plot of the logarithm of the L2-error of the LESFEM-computed heads versus the logarithm 
of the element length for the Gauss points and for the nodes is presented in Figure 4A and that for 
the x-directed flux in Figure 4B. These results indicate that LESFEM convergence rates in the 
L2 -norm are approaching second-order for both head and flux. These results compare favourably 
with the theoretical results of Aziz et a/.' 

PUMPING WELL IN A CIRCULAR AQUIFER 

The following examples simulate a pumping well in a homogeneous confined circular aquifer of 
radius lo00 m. A pumping well of strength m3 s-  ' is located near the centre of the aquifer at 
x=25 m, y=25  m. The boundary of the domain, the source location and the grid used for the 
simulation are illustrated in Figure 1. The aquifer has a uniform thickness of I =  10 m. The 
hydraulic conductivity, K,, = K,, = 1-4 x m s- ' and K,, = 0, and the specific storage, 
S,= 1.5 x m- ', values correspond to typical values for a medium-grained sand. A zero- 
hydraulic-head condition is applied along the straight line segments that approximate the circular 
boundary and the initial head is zero everywhere. For the transient results an initial time step of 
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Figure 3. Convergence of maximum point errors. The logarithm of the maximum error at the Gauss points (squares) and 
the nodes (circles) is plotted versus the logarithm of the element length for (A) head and (B) x-directed flux. Dashed lines 

indicate first-order (m= 1) and second-order (m = 2) convergence 

10 s was used. The time step was subsequently increased by a factor of 1.5 every five time steps. 
A total of 85 time steps were computed. 

The potential scale is P =  1.4 x lo5 and the interior residual weights were computed using 
equations (18). The first-type boundary is enforced with weight 

An analytical solution of the drawdown versus time for a pumping well in an infinite aquifer 
was derived by Theis.” The LESFEM drawdown results at four locations are compared with 
the Theis solutions in Figure 5. Near the source the LESFEM drawdowns show some departure 

= 1.0 x lo3. 
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Figure 4. Convergence of L2-errors. The logarithm of the average L2-error at the Gauss points (squares) and the nodes 
(circles) is plotted versus the logarithm of the element length for (A) head and (B) x-directed flux. Dashed lines indicate 

first-order (m = 1) and second-order (m = 2) convergence 

at early time, but, as time progresses, the solutions match well in all regions. Finally, as the 
constant-head boundary begins to influence the computed solution, the LESFEM heads stop 
decreasing and the computed solution approaches steady state. 

Eventually, the transient solution to this problem reaches steady state. Alternatively, the steady 
state result can be computed in one step by setting the storage term to zero. The steady state 
heads of the one-step solution are contoured in Figure 1. The zero-head contour falls directly on 
the imposed zero-head boundary and the contour interval is 0.05 m. Contours are circular and 
centred on the slightly non-symmetric location of the source. 
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source location and striking 180" (top) and 225" (bottom). The solid line is the analytical solution, the short-dashed line is 
the LESFEM solution and the long-dashed line shows the effect of adding the singular trial function to the LESFEM 

solution 
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a portion of the source element and a small tracking velocity abnormality will be located just 
inside the element boundary. 

At steady state the total flux into the domain must equal the total flux out of the domain and 
the total flux out of the domain should be 

jJg2 q * n d@Q) = Q p ,  (19) 

where n is the outward-directed normal vector and q is the flux vector. The LESFEM flux out of 
the domain, as computed by a contour integral around the domain boundary, differs from the 
pumping well source by less than 0 1 %. 

For comparison, the steady state problem was also solved by the Galerkin finite element 
method (FEM). A quadrant of the circular aquifer was discretized using the bilinear, quadrilateral 
finite element mesh shown in Figure 7. The LESFEM mesh has three unknowns associated with 
each node. Consequently the FEM mesh is refined relative to the LESFEM mesh so that the total 
number of unknowns per unit area is approximately the same for two discretizations. The source 
is located in the exact centre of the aquifer or at the northeast corner of the mesh. Owing to the 
symmetry of the problem, the northern and eastern straightline segments of the boundaries of the 
FEM mesh were modelled as no-flow boundaries. The curved segment of the boundary was once 
again modelled as a constant head of zero. 

The FEM x-directed flux profiles starting at the source and striking west and starting at the 
source and striking southwest are shown in Figure 8. The east--west profile has a distinct step-like 
structure, because the x-directed flux values are constant across the elements in this direction. The 
northeast-southwest profile has a very large velocity error as the first element boundary is 
approached. The LESFEM results shown in Figure 6 are smoother and the magnitude of the 
largest point errors are smaller than the magnitude of the largest FEM point errors. The FEM 

Figure 7. Galerkin finite element mesh. One quadrant of a circular aquifer with radius lo00 m is discretized using 
quadrilateral finite elements. Pumping well source is indicated with a star. Steady state hydraulic heads as computed by 
the Galerkin method are contoured with double lines at the interval of 005 m, with the zero contour falling on the curved 

segment of the boundary 
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Figure 8. Comparison of analytic and FEM steady state flux profiles. The x-directed flux is profiled starting at the source 
location and striking 180" (top) and 225" (bottom). The solid line is the analytical solution and the short-dashed line is the 

FEM solution 

y-directed flux profiles along the same two profiles are shown in Figure 9. Since the east-west 
profile is along a streamline which has been modelled as a no-flow boundary, the y-directed flux 
should be zero. From Figure 9 it is evident that serious y-directed flux errors occur near the 
source location. In contrast, the LESFEM y-directed fluxes along this profile are of the order of 

or less. The y-directed flux of the FEM solution shown in Figure 9 has some abnormalities 
in the area of 200-350 m. These abnormalities arise from non-rectangular isoparametric elements 
which are located along the profile. 

In summary, despite some irregularities, the LESFEM algorithm has performed well. The grid 
has been successfully refined, the transient behaviour of the head solution has been captured and 
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Figure 9. Comparison of analytic and FEM steady state flux profiles. The y-directed flux is profiled starting at the source 
location and striking 180' (top) and 225" (bottom). The solid line is the analytical solution and the short-dashed line is the 

FEM solution. The analytic y-directed flux in the east-west profile is zero 

the circular geometry of the boundary has been reproduced. Irregularities in the fluxes are 
observed near the point source but they rapidly diminish away from the source. In contrast, the 
FEM mesh is more difficult to construct and the FEM results have some very large errors that 
can cause tracking problems. Note that even with the mixed formulation the flux solutions are 
more susceptible to abnormalities than the head solutions. 

RAIN ON THE PLANE 

In the following example the LESFEM flow algorithm is used to compute the steady state 
solution to uniform infiltration into a phreatic aquifer. The finite element grid and aquifer 



746 L. R. BENTLEY AND G. F. PINDER 

Figure 10. LESFEM mesh-rain on the plane. A square domain, rotated 45" relative to the grid orientation, is inscribed 
on the orthogonal mesh. Element dimensions are 100 m x 100 m. Heads are contoured at 0.5 m intervals, starting at the 

3 m contour which overlies the constant-head boundary at the lower left 

boundaries are illustrated in Figure 10. The grid element dimensions are 100 m x 100 m. A square 
domain is inscribed on the orthogonal mesh. The aquifer boundaries and the resulting flow 
direction are rotated 45" relative to the grid orientation. 

The hypothetical aquifer has an impermeable bottom at elevation b = 0. -The aquifer is 
homogeneous, isotropic and has hydraulic conductivity K , , = K y y =  1.4 x m s-'. It is 
bounded on the southwest by a fully connected stream and the boundary is modelled as having 
a constant head of 3 m. The northeast boundary is a groundwater divide and a no-flow boundary 
condition is applied. The northwest and southeast boundaries follow streamlines and are 
consequently modelled as no-flow boundaries. The areal dimension of the aquifer is approxim- 
ately 1414m x 1414 m. The entire aquifer is subject to a uniform infiltration rate of 
I =  1.61 x m s-' ( 2  in year-'). Since the aquifer is not aligned with the grid, the problem is 
two-dimensional. However, in the direction of flow the problem reduces to one dimension and 
can be solved analytically. 

A potential scale of P = 2 . 3  x lo5 was used along with boundary weights Wbl,l, = lo4 and 
W2,12 = lo4. The Darcy's law residual weights were computed using equations (18b) and (18c). 
When the conservation-of-mass residuals were computed using the weights of equation (18a), the 
boundary integral of the LESFEM flux out of the domain was in error by 3%. Consequently, 
conservation-of-mass weights were increased by a factor of two and flux errors were reduced to 
less than 1%. The free surface convergence criterion was &,,=O.Ol m. Starting with a constant 
head of 3 m and zero flux, the algorithm converged after five free surface iterations. 

Head values of the numerical solution are contoured in Figure 10. The 3 m contour coincides 
with the southeastern constant-head boundary. Other contours are straight lines which are 



SOLVING THE GROUNDWATER FLOW EQUATIONS 

3 

s 
5 
3 

x HEAD- -. 
5 
X 
Y 

FLUX - - - - - - - -  *-.. 
-, -. 2 *. 

SOUTHWEST NORTHEAST 
- 1  - . 

747 

6 

E 
G 
h r 
Y 

0 

3 

. ** 
h u 
n\ z 
X - -9- - 
X -- 
3 - -  

w, 
I-. 

8- - '?. 2 I-* 

I-. 
--I-- 

v 

8 - -  
8 -  - t: .- 

SOUTHWEST NORTHEAST 

-1 

u 6  

% 
& 
h 

v 
3, 

- 0  

perpendicular to the direction of flow. The maximum value of the computed head, 5.65 m, is 
found at  the northeast boundary. Figure 11 presents a southwest-northeast profile of the head 
and absolute value of the flux along the centreline of the aquifer. The head values have the 
parabolic shape predicted by the analytical solution. The maximum difference at  a node between 
the computed head and the analytical head is 0.011 m. Figure 11 also shows that the computed 
solution has captured the linear decrease in flux with increasing distance from the river predicted 
by the analytical solution. 

The same problem was solved with the FEM algorithm. A square grid of 27 nodes by 27 nodes 
was superimposed on the aquifer so that the x-direction was aligned with the flow. AS with the 
previous example, the number of degrees of freedom used for the FEM calculation and the 
LESFEM calculation were approximately equal. The FEM-computed head profile and flux 
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profile are shown in the lower part of Figure 11. The FEM solution has captured the parabolic 
shape of the head solution. In contrast to the accurate head solution, the flux profile demonstrates 
a sawtoothed shape, because the derivative of the head is constant across the elements and the 
transmissivity changes with the change in the free surface elevation. The LESFEM and FEM flux 
profiles shown in Figure 11 demonstrate the advantages of the mixed finite element procedure. 

The maximum difference at a node between the LESFEM-computed and analytical x- or 
y-direction fluxes is 1.3 x lop8 mz s-'. The percentage error is defined as the absolute value of the 
difference between the computed and analytical values divided by the analytical value. The 
percentage error in flux averaged over all the nodes is 0.5%. Replacing Q,  in equation (19) with 
I times the area of the domain, the percentage error in global flux was found to be 08%. Finally, 
Figure 12 shows the flux vectors of the computed solution. The flux vectors are parallel to the 
streamline boundaries and increase in magnitude as they approach the discharge boundary. 

The LESFEM algorithm has produced an accurate solution to the steady state non-linear free 
surface problem. The shape of the free surface has been captured to within the accuracy of the 
convergence criterion. Although the grid boundaries are not aligned with the grid, the boundary 
conditions have been effectively imposed. The algorithm has produced accurate flux values with 
the point errors generally less than 1%. The global flux balance is also good. Errors in the flux 
arising from the differentiation of the head that is required by the standard FEM method have 
been eliminated. 

Figure 12. LESFEM flux vectors. LESFEM flux vectors are plotted on the rotated domain of Figure 10. The 
northwest-southeast-trending domain boundaries are shown as solid lines. The outer lines of flux vectors fall on the 

southwest-northeast-trending no-flow boundaries 
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CONCLUSIONS 

A least-squares mixed finite element groundwater flow algorithm (LESFEM) has been intro- 
duced. Hydraulic head and x -  and y-direction fluxes are used as state variables. Residuals are 
written for conservation of mass, Darcy’s law and boundary conditions. The residuals are 
evaluated at  collocation points, weighted, squared, summed and minimized by taking the 
derivatives with respect to the degrees of freedom in the approximation for the state variables and 
setting them to zero. Wells are incorporated into source elements, and velocity singularities are 
accurately handled by not applying Darcy’s law within the source element. For tracking 
purposes, velocities within the source element are interpolated using a singular velocity function. 
Both flux and velocity are Co continuous. 

Test problem results demonstrate the accommodation of irregular boundaries on an ortho- 
gonal mesh and a grid refinement technique which uses orthogonal elements and hanging nodes. 
It has also been demonstrated that accurate velocity and head values can be produced for 
transient, steady state and free surface problems. 

When accurate fluxes are the main objective of a simulation, the mixed finite element 
formulation is superior to the classical formulation, because head values do not need to be 
differentiated in order to produce fluxes. Pathologies in the computed head are not amplified in 
the flux. Similarly, the order of the flux approximation is the same as the order of the head 
approximation. However, fluxes are still more prone to abnormalities than are the heads. 

Although guidelines for weighting and scaling have been presented, care must be taken that the 
conservation of mass is sufficiently enforced. A global flux conservation calculation should be 
done for steady state solutions to assure that the forcing from the conservation-of-mass equations 
is sufficiently represented. If not, the conservation-of-mass residual weight should be increased by 
a factor of two to three. Using the proposed scaling and weighting schemes, experimental 
convergence rates of order one for the maximum point error were obtained for both head and 
flux. Experimental convergence rates approaching order two were obtained for the L2 -error 
norm for both head and flux. 

Irregular domains and local grid refinement are constructed on orthogonal meshes. Use of 
orthogonal meshes allows simple, automated mesh generation procedures. Similarly, combining 
the penalty method for enforcing boundary conditions with an orthogonal mesh allows simple, 
automated boundary specification. Finally, tracking is simplified on an orthogonal mesh. 
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APPENDIX: MATRIX STRUCTURE 

The discrete set of equations (17) can be written in matrix form as 

AX = B. 

The elements of the unknown vector X are related to the state variables by 

X ~ ( I - I ) + ~ = H ; ,  Z = l , .  . . , M ,  

~ 3 ( 1 - i ) + z = Q x i ,  ]=1 , .  . . 9 

~ 3 ( 1 - 1 ) + 3 = Q y 1 ,  Z=1,.  . 7 M ,  
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where I is a node index. The global unknown indices are divided into three subsets such that 
I ; ,  I ; ,  and I ;  are the unknown indices found in equations (21a)-(21c) respectively. 

The elements of the system matrix A are 

aIi Ji = [ Wm: P (;+ Bk) +tip (;+ Bk) +ti 
k = l  
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The three sets of the load vector elements are 

NB2 NB3 + c Wb$,Izb:‘$8sinv12- c Wb$,13B~hfr$~sinv13, 
12= 1 13=1 

where the point source terms are now included in the areal flux term I ‘. 
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